

Fig. 3. Amine location relative to the sodium and chlorine ions. Ionic radii are used for Na and Cl; neutral radii are used for N and H.

Acta Cryst. (1972). B28, 2514

References

BONDI, A. (1964). J. Phys. Chem. 68, 441.

- BUSING, W. R., ELLISON, R. D., LEVY, H. A., KING, S. P. & ROSEBERRY, R. T. (1968). The Oak Ridge Computercontrolled X-ray Diffractometer. Report ORNL-4143, Oak Ridge National Labotatory, Oak Ridge, Tennessee.
- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962). ORFLS. Report ORNL-TM-305, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1964). ORFFE. Report ORNL-TM-306, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- COCHRAN, G. T., ALLEN, J. F. & MARULLO, N. P. (1967). Inorg. Chem. Acta, 1, 109.
- HAMILTON, W. C. & IBERS, J. A. (1968). Hydrogen Bonding in Solids, p. 15. New York: Benjamin Press.
- International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: The Kynoch Press.
- JOHNSON, C. K. (1965). ORTEP. Report ORNL-3794, Oak Ridge National Laboratory, Tennessee.
- LONG, R. E. (1965). A Program for Phase Determination By Reiterative Application of Sayre's Equation. Ph.D.
- Thesis, University of California, Los Angeles, California. MARULLO, N. P. & LLOYD, R. A. (1966). J. Amer. Chem. Soc. 88, 1076.
- SHIELDS, T. C. (1968). Chem. Commun. p. 832.
- STOUT, G. H. & JENSON, L. H. (1968). X-ray Structure Determination, pp. 454-457. New York: Macmillan.
- STREIB, K. F. & TSAI, C.-C. (1968). Department of Chemistry, Indiana University, Bloomington, Indiana.

A Neutron Diffraction Study of the Structure of L-Glutamic Acid. HCl

BY A. SEQUEIRA, H. RAJAGOPAL AND R. CHIDAMBARAM

Nuclear Physics Division, Bhabha Atomic Research Centre, Trombay, Bombay-85, India

(Received 6 December 1971)

A neutron diffraction study of L-glutamic acid hydrochloride, $C_5H_{16}O_4N$. Cl, has been carried out. The structure is orthorhombic, space group $P2_12_12_1$, with four molecules per unit cell. The cell parameters are: $a=5\cdot151$ (6), $b=11\cdot79$ (2) and $c=13\cdot35$ (2) Å. Intensities of 639 (606 non-zero) independent reflexions have been measured at a wavelength of 1.406 Å, using the diffractometer in symmetrical setting. The positions of the ten hydrogen atoms in the asymmetric unit have been determined from a Fourier map of the nuclear scattering density computed using the phases from the X-ray heavy-atom positions. The structure has been refined to a final conventional R value of $4\cdot3\%$ by the method of least-squares. It consists of molecules hydrogen-bonded in zigzag chains along the c direction. Details of hydrogen bonding and molecular conformation are discussed. The average C-H bond length is $1\cdot090$ (11) Å. The average values of the C-C-H and H-C-H angles are $109\cdot4$ (7) and $106\cdot0$ (12)°, while those of the C-N⁺-H and H-N⁺-H angles are $109\cdot9$ (7) and $109\cdot0$ (9)°.

Introduction

A detailed knowledge of the hydrogen atom positions and the side group conformations in amino acids is of considerable interest in the calculation of the configuration of the side groups associated with polypeptide chains. This paper reports a precision neutron diffraction study of the structure of L-glutamic acid. HCl as part of the program of studies currently in progress in our laboratory on the structure and hydrogen-bonding properties of amino-acids. A two-dimensional Xray study of this structure was carried out by Dawson (1953) but the hydrogen atom positions were not determined.

Experimental

Large, clear and well formed crystals of L-glutamic acid.HCl, $C_5H_9O_4N$.HCl, were easily obtained by slow evaporation from a saturated aqueous solution with excess 20% hydrochloric acid. The crystals were

generally of tabular shape and deliquesced slightly on exposure to air. The principal faces were $\{001\}$ and the bounding faces were of the forms $\{011\}$ and $\{101\}$. The density of the crystals, measured by flotation in a mixture of carbon tetrachloride and ethylacetate, was 1.524 g.cm⁻³.

Neutron intensity data were recorded using the 4circle diffractometer, 3D-FAD (Momin, Sequeira & Chidambaram, 1969), at the CIRUS reactor in Trombay. The specimen crystal used was in the shape of a five-sided prism (volume=27 mm³) with height=5.1mm along the a direction and with four of its side faces being (001), $(00\overline{1})$, $(0\overline{1}1)$ and $(0\overline{1}1)$ and the fifth one cut roughly parallel to (010). The widths of these faces were 2.5, 2.3, 0.9, 1.4 and 1.9 mm respectively. The crystal was given a thin coating of an adhesive (brand name: Stickfast) to prevent exposure to air, and mounted on the diffractometer with its a axis parallel to the φ axis. The cell parameters and crystal orientation were refined on the basis of the optimized 2θ , χ and φ values for some 25 strong reflexions, using the program REFINE (Srikanta & Sequeira, 1968). The refined values of the cell constants are listed in Table 1 along with other crystal data. The systematic absences were consistent with the space group $P2_12_12_1$.

The integrated intensities of 639 independent reflexions within the limit $\sin \theta/\lambda = 0.57$ [$\lambda = 1.406$ (1) Å] were recorded in the 'bisecting position' using the θ -2 θ coupled step-scanning technique. Two standard reflex-

Table 1. Crystal data for L-glutamic acid. HCL

P212121
5·151 (6) Å
11.789 (19)
13.347 (20)
810 5 Å ³
4
1.524 g.cm ⁻³
1.509

ions were recorded after every 20 reflexions to keep a check on the stability of the crystal and that of the counting equipment. The reproducibility of the standard intensities was within 4%, and there was no deterioration of the crystal quality. The second order contamination in the beam was avoided by using germanium (331) as the monochromator. The effects of multiple reflexions were checked for the h00 reflexions by examining their peak intensities as function of the rotation about the scattering vectors and found to be negligible.

The integrated intensities were reduced to F_o^2 by applying the standard Lorentz and absorption corrections using our program *DATARED* (Srikanta, 1968) which includes the absorption correction program *ORABS* (Wehe, Busing & Levy, 1962) as a subroutine. An absorption coefficient of 2.75 cm⁻¹ (measured) was used. The transmission factors ranged from 0.448 to 0.608.

Fig. 1. Variation of observed and estimated extinction factors as a function of the parameter X.

Refinement

The positions of the ten hydrogen atoms in the asymmetric unit were obtained from a three-dimensional Fourier synthesis of the nuclear scattering density computed using the program FORDAP (Zalkin, 1962) with the observed F_o 's and phases as calculated from Dawson's (1953) heavy-atom positions. All the structural parameters were then subjected to a series of full-matrix least-squares refinements (on F^2), first with isotropic and then with anisotropic temperature factors, using the program XFLS (Busing, Martin &

Levy, 1962). In the anisotropic refinement the parameters of the heavy atoms and the hydrogen atoms were refined in alternate cycles as it was not possible to refine all the parameters in the same cycle. The function minimized was $\sum \omega (F_o^2 - |F_c|^2)^2$ with initial weights $\omega = [\sigma_s^2(F_o^2) + (0.1F_o^2)^2]^{-1}$ where $\sigma_s(F_o^2)$ are the standard errors based on counting statistics. Reflexions for which $|F_c|^2/\sin 2\theta > 100$ were not used initially.

Extinction

Severe extinction effects became apparent during the refinement, resulting in unreasonable values for some

Table 2. Final positional and thermal parameters

All the values are multiplied by 10⁴ and their standard deviations (in units of the last digit) are given in parentheses. The form of the anisotropic temperature factor is

	$\exp\left[-(\beta_{11}h^2+\beta_{22}k^2+\beta_{33}l^2+2\beta_{12}hk+2\beta_{13}hl+2\beta_{23}kl)\right].$									
	x	У	z	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}	
C(1)	3866 (9)	3565 (4)	9105 (3)	154 (18)	37 (4)	21 (2)	-15(7)	31 (5)	6 (2)	
C(2)	5690 (9)	3038 (4)	8324 (3)	67 (14)	36 (3)	13 (2)	1 (7)	2 (5)	2 (2)	
C(3)	4807 (8)	3450 (4)	7285 (3)	108 (14)	24 (3)	21 (2)	26 (6)	7 (5)	-7(2)	
C(4)	6619 (9)	3166 (4)	6416 (3)	165 (17)	27 (3)	20 (2)	17 (7)	-8 (6)	4 (3)	
C(5)	5784 (10)	3709 (4)	5474 (4)	183 (16)	21 (3)	27 (3)	9 (7)	-7(7)	7 (2)	
O(1)	4369 (14)	4626 (5)	9271 (5)	250 (22)	39 (5)	56 (4)	-12 (10)	73 (10)	-15(4)	
O(2)	2098 (14)	3027 (5)	9486 (4)	297 (25)	47 (5)	27 (3)	26 (10)	29 (9)	0 (3)	
O(3)	4 19 5 (16)	4481 (6)	5449 (4)	411 (29)	55 (5)	18 (3)	29 (12)	-1 (9)	9 (3)	
O(4)	6935 (14)	3324 (6)	4663 (4)	314 (25)	51 (5)	20 (3)	30 (11)	4 (8)	-2(3)	
N	5599 (6)	1787 (3)	8423 (2)	125 (11)	31 (2)	26 (2)	17 (5)	- 19 (4)	3 (2)	
Cl	543 (6)	718 (3)	7386 (3)	154 (11)	42 (2)	34 (2)	24 (5)	16 (5)	6 (2)	
H(1)	2916 (21)	4977 (8)	9683 (8)	303 (43)	49 (8)	56 (6)	64 (15)	73 (15)	-1 (6)	
H(2)	6450 (24)	3716 (9)	4042 (6)	389 (44)	64 (8)	24 (4)	4 (17)	34 (13)	6 (5)	
H(3)	5805 (25)	1560 (10)	9168 (6)	416 (43)	71 (8)	25 (4)	117 (19)	63 (13)	13 (5)	
H(4)	7186 (21)	1434 (8)	8030 (8)	268 (38)	28 (7)	44 (6)	43 (14)	48 (13)	-1(5)	
H(5)	3796 (21)	1454 (11)	8137 (9)	186 (36)	79 (11)	60 (7)	-26 (16)	20 (13)	25 (7)	
H(6)	7655 (15)	3316 (10)	8482 (8)	51 (26)	71 (8)	52 (6)	- 19 (13)	7 (11)	8 (7)	
H(7)	4575 (31)	4361 (8)	7319 (8)	700 (67)	34 (6)	43 (5)	- 39 (20)	58 (20)	13 (6)	
H(8)	2933 (23)	3103 (12)	7136 (9)	251 (37)	110 (12)	47 (6)	47 (21)	4 (15)	6 (8)	
H(9)	8585 (18)	3460 (13)	6607 (8)	88 (29)	136 (13)	44 (5)	13 (17)	9 (12)	18 (8)	
H(10)	6814 (34)	2236 (9)	6291 (8)	920 (91)	34 (7)	38 (5)	165 (23)	71 (20)	9 (5)	

Table 3. Observed and calculated structure factors for L-glumatic acid. HCL

The five columns in each set contain the Miller indices h and l, 100 F_o^2 , 100 $|F_c|^2$ and 1000 Y. F_o^2 has been divided by the extinction factor Y.

	* • •		••	1597	1555	427	4 1	1410	3413	107	2 12	782	426 393	1 12	2102	2090 4	23 1	1 3990	4571	227		1.64	a. 825	e c	19.28	1907 3	n, 02	121	99 4	105	3 7454	8071	219		**	19 1	a 3
0 4 125	0 1060	0 350	••	439	477	587		1762	1642	409	2 13	475	758 625	1 15	814	806 6	09 1	2 1619	1775		0 10	14.29	1524 451	0 1	1375	1101 4	39 0 3	496	410 6	76 1	4 2154	2154	344	۰۰	5841	5418 2	70
0 6 109	7 977	7 423		\$16	467	***		117	693	962	3 0	493	+33 448	1.14	512	V4 4		1 124				16.13	1444 453	د ۵	110	157 8			104 8		1 5180	3 3317	326	0 2	1470	1336 6	90
0 8 34	0 399	\$ 631			• 1			895	307	715	i .		1014 492	2 0	197	128 1									2243	2147 1		184	115 8		0 404	5 481	681	• •	122	276 1	m
0 10 1990	2 20061	1 135	0 2	112	101	676		543	477	***	• •	2744	23.35 3.35															1116	110.0		1 457		***		1190	1401 4	7.8
0 12 14	6 140		• •	1845	24.70	204		1815	14.44		: : ·			- 11				:													0 14				174.1	40. 1	
0 14 97		4.74		449	570			-	115		÷ :			. : :									410 676			14040 4				~ ;						~	
																			780	334	11	180	159 801		•	244 1								: :			
	, <i>a</i> n			1.001	1342	""		-01	160		•••	764	808 190	~ `	140			* *	500	190	· •	540	511 600	• •	140	** •	0, 0,	2266	225) 1	•2 <u>(</u>	2 3498	. 1944	· · · ·			•, •	
1 2 120	1 100		••	442	418	581	•••	650	810	545	s •	\$725	1439 287		6055	7349 2	00 1	9 1168	1344	511	· •	322	515 642	0 9	798	• • • •	no ono	1542	1518 4	58 7	1 165	/ 195	824	•••	192	125 8	. .
1 3 4345	9034	1 121	• •	580	517	\$75	4 10	793	413	115	, ,	490	528 633	27	>>	60 9		0 1104	1102	514	1.4	473	636 636	0 10	875	956 5	42 0 11	en o	80/ 5	an 7	• •••	1 165	.,	• •	805	831 5	-M
1 4 1010	949	9 942	۰.	1344	5426	126		24.2	255	783		186	838 540		1019	940 5	19 1	2075	259 1	,,,	• •	134	107 100	0 11	485	339 6	*1 012	3134	2782 3	on 2	1 742	/ 276	801	۰,	1038	1069 5	.34
1 3 2354	1 2752	, m.	09	1234	1005	485	• •	190	263	762	3 9	٠	14 984	2 9	136		an 11	2 161	97	908		1685	1747 344	0 12	**		97 10	179	175 8	24 2	7 210	/ 235	198	۰.	941	781 5	45
1 4 31		825	0 10	1052	1005	520	\$ 2	617	861	513	3 10	1074	1134 526	2 10	1680	1275 4	16 2	0 552	431	\$22		970	-	۰ ۰	12		- 1 -	340	345 7	0 6 7	. 155	5 81	914	۰,	3794	3357 3	
1 7 4264	4 4 34 4	245	0 11	4174	3962	106	• •	345	350	697		104	69 911	2.11	128	76.4 6	<u>~</u> 2	1 1800	4019	25.0		2000	1241 101		1997	-	M 1 2	4224	46.01 2	11 2	9 9242	2 4079	502	1.6	411	412 7	12
			0.12				• •	612	6.74	474								1 1804	1801		11									,,	0 1226		444				
							11														1.1	475	459 675	1.1		677 3				2				11			
							11							~ * *	1787	1143 1	** <u>{</u>				1 10	1444	1581 671	• •	1401		an 1	<i></i> ,		os /							
1 10 59	, ,07	698	0.14		1021		· •	**	•"	•••>			5/2 449		- 54		****	4 1310	1016	478		343	353 742	• •	274	83 7	,	5571	0145 5	35 2			•••	* *	222	21.00 4	••
111 2746	2902	554		94		414			2		• •	200	312 755	• •	1011	4161 2	76 2	5 1246	1514	446	1 12	1394	1590 471	۰,	176	114 0		*	174 8	., ,	1 9320	. , 10	716		***	<i>7</i>) 1	*
1 12 44	1 1 10	700		251	163	• 3 9	• •	547	438	448	• •	5190	1910 258	, ,	161	168 6	16 2	1077	1089	482	• • •	341	562 751		187	601 5	50 Y 7	529	429 6	a,)	3 1658	J 1666	476	* *	42	52 9	45
1 13 6		985	, ,	403	419	484	• •	1120	1073	×9	• •	1689	1506 425		74	143 8	39 Z	7 1803	1803	400	2 0	1518	1420 444	۰,	1155	1163 4	۰۱ ۸	626	505 6	ы,	1 582	405	715	,,	417	357 1	40
1 14 /21	299	187	1 3	1601	1426	101	01	148	147	704	• •	1119	1056 487		423	199 6	* *	8 449	432	673	2 1	1293	1/81 460	1.8	1142	1254 4	78 1 10	1731	1810 4	, , ,	y yy	/ 31	965	2 7	109	152 8	157
2 0 11242	1 1 1 96	104		2556	3175	224	• >	6126	10716	115			442 394		186	197 7	un 2	9 596	542	***	5.2	641	875 527		16.00	1109 4	24 1.12	1879	1760 6		1 1278	1 1314	490		375	397 1	25
2 1 44	144	473	1.5	4789	4495	206	04	103	101	787		106	257 783		2001	24.2 4		0 824	542	647	;;	1041	1035 492	1 10	18	104.0		1712	36.33		7 275	216	610	• •	979	1029 1	
7 7 4 7 14		184		1145	441			1780	4030	764		1515	418 447	- 11				1 49	922	261	11		181 701		****			1877	1985 4		8 2219	2205	144	× 2	1558	1661	
												103	111 000						16.18	344	11			1.11													· ·
1 1 1			11											2.2	177	1940 6					11		571 690	1.11		405 4	2 ::										**
		/00	1.1			, ,,			"				355 141			1541 4					£ 1	3108	6329 230			1000											
2 3 1241	100	430	1.7		10	784	•••			***		***	594 637	,	2141	2116 4		ć				<i>/*?</i>	600 004		1024	1041 3		2040	3140 3	• •			,,,			1061 3	
	• ••	93 1	1 10	1042	1002	529	• •	4390	· •	24)	• •	500	279 761	4 D	471	389 1		5 mm	2000	344		1664	1628 432		3005	1061 4	on ()	16.16		8.				.,	303		
2 7 2145		150	1.11	6984	4574	246	0 10	1160	1016	520 '	5 2	1944	507 442	4 1	1583	1482 4	58 3	4 45.59	5095	255		691	974 558	,,	100	526 6	y , 24	4390	4807 2	73 O	448	. 448	690	• •	1344	1354 4	-64
2 8 11	101		1 12	733	754	408	0 11	203	173 1	• 39	, ,	43	1 160	4 2	1208	1246 4	su 3	3 376	545	714	2 10	4472	4248 300	2.4	1397	1427 4	48 27	2344	2156 3	*5 0	1 29		942	۰,	497	635 6	- S 2
2 7 1921	1/19	445	1 13	76	51	\$70	0 12	137	123 1	664 '	• •	413	356 703	٠,	***	105 5	39 3	7 1405	1243	479	2 11	131	168 851	25	1299	2043 3	87 79	2349	2373 3	ac o	s 242	287	784	0 7	732	723 6	.03
2 13 194	1642	452	1 14	1989	1699	472	0 11	473	448	714 '		76	32 931		2300	2414 3	• • •	8 408	410	496	2 12	1549	1674 484	2.6	2585	2025 3	52 3 0	3+81	3935 3	15 0	1 2807	2413	141	1 1	942	1113 1	
		76.1	20	\$127	\$917	202	0.14	1/1	101	- 100		7/8	060 541	4.5	5060	3546 30	20 1	• 240	233	797	10	112	728 597	2 7	415	484 6	ы) ¹	1011	140 5	52 0	3 4971	5251	266	1 2	733	74 1	
				241	285		1 0	10713	17000						1108	1180 48		996	826	-	11		1767 107		128	42.7	10 3 2	1170	1494 1		4 92	10 879	540	• •	***	951 9	
							11	4100							609	612 61			-		1.1							1110	1242 4		4 2147	1 1949	-	2 0			
		607	::				11								1041						11							188		en 0.1	0 146	141					
3 2 1481	1 101	100	11				11				11	2	,								2.2					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							_	11			
, , , , , , , , , , , , , , , , , , ,	1 79	676		24		1 24	11						104 199					1 0		961	, ,	1808	1716 4.45	- C !!		140 8								• •			
3 4 14853	1 17.41	126		1320	1011	•••	1.1	1070					817 316	2.1	1807	170 42	• •	2 607	605	427	••	550	348 101	, ,		· · · ·	• ? •		1015 5			1033	224				
1 5 2044	2194	150	2.0	6580	8542	176	• •	1610	1114	576 C	• • •	1180 1	755 274	• •	74	850 55	• •	3 928	1042	920		2506	2280 317	, ,	2618	2499 3		a) 4	990 Y	43 1	2 1104		514	• •	108	157 6	134
3 8 110	, w	830	21	4469	3136	240	••	5443	»» ÷	260 0		0.6	072 198	• •	373	333 64	• •	4 804	803	347	, ,	3920	3706 507	· · ·	772	797 9	•	**0		• •	4 963		559	0 2	3814	3594 3	26
1 7 4401	41/2	277	2.0	742	683	180	۰,	224	255	727 O		۰	95 861	••	62	45 14	• •	5 2009	2155	386		2016	928 609	, ,	1323	1599 4	er • •	44	50 9	39 1	* 2633	, 2776	340	۰,	468	460 6	.93
N # 3784	1401	311	2.9	/147	2214	343	1.	334	311 .	10 O		28	1 104	• •	499	431 67	2 4	6 189	780	571		1671	1583 453	3.4	9921	6397 2	39 4 7	2434	2443 5	70 V	• 1962	1589	454	۰.	94		27
		186	2 10	1562	7555	224	1.4	1785	1693 4	•• 0		854	125 545	۰.	462	431 86		7 173	204	805	1 10	1903	1443 478	, ,	3983	4295 2		167	178 6	37 V	* >>>	5 288	768	۰,	۰	1 9	- 99
		+43	2.11	1197	1200	-	1 10	1293	1172 1	×∞ •	10 1	276 1	536 445	5 7	279	299 14	•	8 610	789	517	3.11	514	337 671		286	316 7		2463	2487 5	73 I	a 190	3 379	123	۰.	34		95
							1.11	1419	1142	127 0						4		4 165	147	857		1.4	127 878		5011	MM0 1					· 200	234	797	1 0	2296	2199 1	
			1.11				1.12	240	245 4											979		744	417 411		-		~ 00	11445	12412 1	70 2	0 1170	3 7428	217	1.1	16.5		
3 14 149			1 12								11										111				~~~~			1493	1494 4		1 1124	4 100					
4 5 45		102	, .	+8>	Sec. 1		1.22				••	347	114 776				2 2	1 10			• •	14.20												11			**
4 1 21		**	•••	1311	14.94	•••		100			••	341	517 776		407	314 34	· ·	2 66		404	• •	1811	1081 240											11		100,	**
4 2 546	416	559	, ,	2486	54.00	, , ,	5 0	110			۰	•	1 999	• •	5541	2005 27	, ,			574	• •	445	961 610			162 1		105	200 0				439	10			39
4 3 5752	6768	/10	, ,	1419	1127	***	× 1	12	., ,	172 1	•	473	814 646	• •	5 3 2	1671 356	s)	• • • •	144	847	4 5	54	85 102	* 3	4901	4834 2		4 14	364 7			~~	**	< ?		50 1	9 8
4 4 1/15	1260	455		14.71	1348	409	5 5	7405	8101 1	165 1	2	378	140 344	۰,	769	401	• •	5 11	. •>	920		929	839 541	• •	915	1034 5	27 0 5	4593	5117 2	• ?	, 1100	1073	515	2 2	1177	1174 5	23
	2014	179	• •	1295	1484	276	23	2240	2274 1	10 1	•	•#5	17 305	۰.	459	464 . 61		6 129	134	850		399	422 690	• •	1608	16.26 6	ы с о е	2306	24.24 \$	40 ⁷	• • • > 5	- 541	442	* *	762	791 9	99
	12	***	1.		425			1402	1244 4	.04 1		24.4	101 101	0 1	4 296	1812 211	•		• •			2244	2241 384		394	581 7	10 0 8	13	19 9	76 X	1 197	150	844				
			1.1	8057		140	2 5	***	932 4	171		110	S4 641		1587	1400 410		1 680	678	530	• •	3223	3360 320	47	494	463 6	13 0 10	3515	3334 3	20 3	1 1228	1257	108				
				3147	2070		2 6	1071	3121	-	÷	**	71 089	0 9				2 87	120	828	1.1	1175	1164 504		58	23 8	73 0 11	19		••••	3 2308	2210	402				
			11	14.01				4.02	401		÷ .			0 10	1195	1911 444		• •			1.1			• •	170	301 6		2493	7147 3	57 3	4 65		948				
			1.7				11													**	2.5				2.3			14	14	. e	3 179	775	112				
• • • •			, 10		105.4	**7	::				: '						: :				.,			11							2783		-				
	490	***			•14	•>?	1.1			nv '		170	200			• • • • • •		,	874	~	· ·	141	144 844	· •					, ,		. 124.1						
5 / M 5	45°	527	1 12	•••	**>	***	2 10	au 3		102 1	۰o	<i>m</i>	*** ***	0 13		132 045	•	· •••	500	•.*	• •	305	750 161			• •				•••••			***				
4 4 4304	1.00	-		104	74	*10	2 11	122	171 1	10 1		144 4	14 262	10	- 11	1 1 1 1 1 1		a 41		TP6				01	•	40 1	H7 14			**							

of the thermal parameters even though many strong reflexions were omitted. Hence, a correction for secondary extinction was applied in the following way (Zachariasen, 1967):

$$F_o^2 \text{ (corrected)} = F_o^2 / Y$$

$$Y = [1 + 2X]^{-1/2}$$

$$X = G Q_o \overline{T}$$

where $Q_o[=(\lambda^3/v^2) |F_c|^2/\sin 2\theta]$ is the reflectivity, \overline{T} $-(1/A)\frac{dA}{d\mu}$ is the mean absorption weighted path length and $G = \gamma/\lambda \{1 + (\gamma/\lambda g)^2\}^{-1/2}$ is an isotropic extinction parameter. \overline{T} for each reflexion was computed by a modification of the program ORABS (Wehe, Busing & Levy, 1962) and transferred to the least-squares program. The extinction parameter Gwas refined along with other parameters (see, for example, Coppens & Hamilton, 1970) by suitable modifications of the program XFLS. Details of the extinction treatment will be given separately (Sequeira, Rajagopal & Chidambaram, 1972). The final value of G was $1.44 (10) \times 10^5$, which corresponds to an equivalent mosaic spread of 0.4 sec of arc. Some 40 reflexions for which the extinction factor Y was less than 0.25 were omitted from the refinement as they were significantly undercorrected (see Fig. 1).

An error analysis based on F_o^2 values corrected for extinction indicated the suitability of the weighting scheme $\omega = 1/\sigma^2 = [0.35 + 0.04545|F_c|^2/\sin 2\theta]^{-2}$. This scheme used in the final stages of refinement resulted in the following values for the discrepancy factors:

No. obs.	R_1	R_2	R_{ω}
636	0.0559	0.1096	-
566	0.0432	0.0683	0.0898
$(F_a^2 > \sigma; Y > 0.25)$			

where $R_1 = \sum ||F_o| - |F_c|| / \sum |F_o|$; $R_2 = \sum |F_o^2 - |F_c|^2 | / \sum F_o^2$ and $R_\omega = [\sum \omega |F_o^2 - |F_c^2||^2 / \sum \omega F_o^3]^{1/2}$. The values of the scattering amplitudes (in units of 10^{-12} cm) used were: H = -0.372, C = 0.6626, N = 0.94, O = 0.575 and Cl =0.96 (Shull, 1971). The final positional and thermal parameters are listed in Table 2, and the observed and calculated structure factors are compared in Table 3.

Discussion of the structure

The X-ray structure of L-glutamic acid. HCl given by Dawson (1953) is basically correct. However, there are significant differences between Dawson's heavy atom parameters and those obtained in this study. For example, the systematic long-short-long type of variation in bond lengths along the carbon chain pointed out by Dawson is not observable. The distances and angles within the molecule, computed using the program ORFFE (Busing, Martin & Levy, 1964), are given in Table 4. The distances and angles involving the nonhydrogen atoms are compared in Table 5 with the weighted average values for un-ionized amino acids reported by Sundaralingam & Putkey (1970). The two seem to agree fairly well. The bond distances except C(4)-C(5) in the side chain are close to their normal values. The value of C(4)-C(5) (1.476 Å), however, is somewhat shorter than the value of 1.50 Å normally associated with $C_{sp2}-C_{sp3}$ single bonds.

Table 4. Bond distances (Å) and angles (°) within the molecule

The standard deviations are given in parentheses.

Bond distances			
C(1)–O(1)	1.296 (8)	C(2) - H(6)	1.085 (10)
C(1) - O(2)	1.221 (9)	N - H(3)	1.036 (11)
C(1) - C(2)	1.535 (7)	N H(4)	1.056 (11)
C(2)-N	1.482 (6)	N H(5)	1.078 (12)
C(2) - C(3)	1.537 (6)	C(3) - H(7)	1.082 (11)
C(3) - C(4)	1.526 (7)	C(3) - H(8)	1.067 (13)
C(4) - C(5)	1.476 (7)	C(4) - H(9)	1.101 (12)
C(5) - O(3)	1.225 (9)	C(4) - H(10)	1.113 (12)
C(5)–O(4)	1.315 (8)	O(1)-H(1)	1.017 (13)
		O(4) - H(2)	0.981 (11)
Bond angles			
C(1) - O(1) - H(1)	109.8 (8)	C(2)-C(3)-C(4)	115.8 (4)
O(1)-C(1)-O(2)	125.4 (6)	C(2) - C(3) - H(7)	108.0 (7)
O(1) - C(1) - C(2)	112.6 (5)	C(2) - C(3) - H(8)	108.4 (8)
O(2) - C(1) - C(2)	122.0 (5)	C(4)-C(3)-H(7)	108.4 (8)
C(1) - C(2) - N	108.8 (4)	C(4) - C(3) - H(8)	109.1 (8)
C(1) - C(2) - C(3)	107.7 (4)	H(7)-C(3)-H(8)	106.7 (12)
C(1) - C(2) - H(6)	108.4 (7)	C(3) - C(4) - C(5)	112.0 (4)
N C(2) - C(3)	112.6 (3)	C(3) - C(4) - H(9)	108.5 (7)
N C(2) - H(6)	108.2 (7)	C(3)-C(4)-H(10)	112.7 (8)
C(3) - C(2) - H(6)	110.9 (7)	C(5)-C(4)-H(9)	109.2 (8)
C(2) - N - H(3)	109.8 (7)	C(5)-C(4)-H(10)	109.0 (7)
C(2) - N - H(4)	108.9 (6)	H(9)-C(4)-H(10)	105.2 (13)
C(2) - N H(5)	111.0 (8)	C(4) - C(5) - O(3)	122.7 (5)
H(3) - N - H(4)	107-2 (9)	C(4) - C(5) - O(4)	114.9 (5)
H(3)-N-H(5)	109-5 (10)	O(3) - C(5) - O(4)	122.4 (5)
H(4) - N - H(5)	110.4 (9)	C(5) - O(4) - H(2)	114.7 (9)

	Tal	ble	5.	Comparison	of	° bond	distances	and	angl	les
--	-----	-----	----	------------	----	--------	-----------	-----	------	-----

	Present	Weighted average value* for un-ionized amino
Distance (Å)	value	aciu residues
C(1)O(1)	1.296 (8)	1.306 (11)
C(1) - O(2)	1.221 (8)	1.203 (9)
C(1) - C(2)	1.535 (6)	1.524 (7)
C(2)-N	1.482 (6)	1.482 (4)
C(2) - C(3)	1.537 (6)	1.523 (13)
Angle (°)		
O(1)-C(1)-O(2)	125.4 (6)	126.1 (9)
C(2) - C(1) - O(1)	112.6 (5)	111.1 (10)
C(2) - C(1) - O(2)	122.0 (5)	122.8 (15)
C(1) - C(2) - N	108.0 (4)	108.4 (12)
C(1) - C(2) - C(3)	107.7 (4)	110.2 (21)
N - C(2) - C(3)	112.6 (3)	110.4 (6)

* Sundaralingam & Putkey (1970).

The average distances and angles involving the hydrogen atoms are in good agreement with the values observed in other amino acid crystals. For example, the average C-H distance of 1.090 (11) Å obtained here is close to 1.096 Å observed in L-alanine (Lehmann, Koetzle & Hamilton, 1972); the average values of 109.4 (7)° for the C-C-H angle, 106.0 (12)° for the H-C-H angle, 109.9 (7)° for the C-N⁺-H angle and 109.0 (9)° for the H–N⁺–H angle also compare fairly well with the corresponding values of 110.2, 108.7, 109.8 and 109.1° observed in L-alanine.

Molecular conformation

A stereoscopic picture of the molecule drawn using the program ORTEP (Johnson, 1965) is shown in Fig. 2 and its conformation in Fig. 3. The torsion angles about various bonds are also given in Fig. 3 following the nomenclature recommended by the IUPAC-IUB Commission (1970).

The α -carbon atom [C(2)] is planar with the carboxyl group C(1) O(1) O(2), and the least-squares plane through these is

 $3 \cdot 197X - 3 \cdot 233Y + 9 \cdot 804Z - 9 \cdot 000 = 0$,

the maximum deviation from the plane being 0.01 Å for C(1). The ammonium nitrogen is displaced from this plane by 0.47 Å, such that the value of the torsion angle ψ (1), {N-C(2)-C(1)-O(2)}, is negative as is usually observed (Lakshminarayanan, Sasisekharan & Ramachandran, 1967) in L-amino acids. The α -NH₃⁺ group is staggered relative to the substituents on C(2) as shown in Fig. 3(b).

The side chain conformation is normal, with C(4) taking the most favourable staggered position *trans* to C(1) [Figure 3(c)] and C(5) being *trans* to C(2) across C(3)-C(4) [Fig. 3(d)]. The end carboxyl group C(5) O(3) O(4) is planar with C(4), and the corresponding least-squares plane is

3.760X + 7.964Y + 1.390Z - 5.899 = 0.

Fig. 2. A stereoscopic drawing of the molecule.

Fig. 3. Torsional conformations looking down bonds: (a) C(2)-C(1); (b) C(2)-N; (c) C(2)-C(3); (d) C(3)-C(4); (e) C(4)-C(5); (f) C(5)-O(4); (g) C(1)-O(1).

Table 6. Hydrogen bonds in L-glutamic acid. HCL

Fig. 4. A stereoscopic drawing of the unit cell viewed along the a axis.

This plane is tilted by 13.9° from the plane defined by the previous adjacent three atoms C(5) C(4) C(3) while the corresponding tilt in L-aspartic acid is about 50° (Derissen, Endeman & Peerdeman, 1968).

The dihedral angles 89.6 (4), 89.9 (5) and 88.5 (5)° between the H–C–H and C–C–C planes through the tetrahedral carbon atoms C(2), C(3) and C(4) respectively are close to the expected value of 90°.

Hydrogen bonding

The structure is strongly hydrogen-bonded. Each molecule is involved in five hydrogen bonds, two from the carboxyl hydrogens H(1) and H(2) and three from the amino hydrogens H(3), H(4) and H(5). The distances and angles characterizing these hydrogens bonds are listed in Table 6. Adjacent molecules are linked into zigzag chains along the direction of the *c* axis by means of strong hydrogen bonds of the type O(1)-H(1)···O(3) between the carboxyl groups. These chains are then held together by the N-H···O bonds, while the N-H···Cl and the O-H···Cl bonds provide additional links between them. A stereoscopic drawing of the unit cell is shown in Fig. 4.

Technical assistance given by Shri S. N. Momin during the data collection is gratefully acknowledged.

References

BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962). ORFLS, ORNL-TM-305. Oak Ridge National Laboratory, Oak Ridge, Tennessee. The CDC 3600 version incorporates modifications by W. C. HAMILTON, J. A. IBERS, C. K. JOHNSON, S. SRIKANTA and S. K. SIKKA. COPPENS, P. & HAMILTON, W. C. (1970). Acta Cryst. A26, 71. DAWSON, B. (1953). Acta Cryst. 6, 81.

- DERISSEN, J. L., ENDEMAN, H. J. & PEERDEMAN, A. F. (1968). Acta Cryst. B24, 1349.
- IUPAC-IUB Comission on Biochemical Nomenclature (1970). *Biochem.* 9, 3471.
- JOHNSON, C. K. (1965). ORTEP, Oak Ridge National Laboratory Report No. 3794, Oak Ridge, Tennessee.
- LAKSHMINARAYANAN, A. V., SASISEKHARAN, V. & RAMA-CHANDRAN, G. N. (1967). In *Conformation of Biopolymers*. Vol. 1, p. 61. Edited by G. N. RAMACHANDRAN. New York: Academic Press.
- LEHMAN, M. S., KOETZLE, T. F. & HAMILTON, W. C. (1972). J. Amer. Chem. Soc. In the press.
- MOMIN, S. N., SEQUEIRA, A. & CHIDAMBARAM, R. (1969). Abs. of Seminar on Crystallography, Centre of Advanced Study in Physics, Madras.
- SEQUIRA, A., RAJAGOPAL, H. & CHIDAMBARAM, R. (1972). To be presented at the Ninth International Congress of Crystallography, Kyoto, Japan.
- SHULL, C. G. (1971). Private communication.
- SRIKANTA, S. (1968). DATARED, a Fortran Program for data reduction. (Unpublished).
- SRIKANTA, S. & SEQUEIRA, A. (1968). REFINE, a Fortran Program for refining crystal orientation and cell parameters. (Unpublished).
- SUNDARALINGAM, M. & PUTKEY, E. F. (1970). Acta Cryst. B26, 790.
- WEHE, D. J., BUSING, W. R. & LEVY, H. A. (1962). ORABS, a Fortran Program for calculating single crystal absorption corrections. Oak Ridge National Laboratory Report No. TM-229. The CDC 3600 version incorporates modifications by S. SRIKANTA and A. SEQUEIRA.
- ZACHARIASEN, W. H. (1967). Acta Cryst. 23, 558.
- ZALKIN, A. (1962). FORDAP, a Fortran Program for Crystallographic Fourier Synthesis. (Private communication.)